Close Search
mask-group
FACULTY

Dr. K. SUSHAN BAIRY Assistant Professor

School of Applied Sciences

Dr. K. SUSHAN BAIRY

Specialization

Theory of Numbers, q-series, Modular equations, Class invariants, Continued fractions, theory of partitions.

Qualification

M.Sc., M.Phil., Ph.D

Teaching Experience

Academic- 18 Years

  • Department of Mathematics, REVA University, Bengaluru since September 2021.
  • Vijaya College, R.V. Road, Bengaluru, Assistant Professor & Coordinator, 10 YEARS
  • MCA Department, Bangalore University, Full-time Guest Faculty, 6 Months
  • Government Science College, Nrupatunga Road, Bengaluru, Guest Faculty, 3 Years

Awards & Recognition

  • Best Research Article presented award, International Conference on Emerging Trends in Mathematical Sciences, July 25-26, 2014, Vijayanagara Sri Krishnadevaraya University, Bellary. ``New identities for Ramanujan's cubic continued fraction.

Publications In Refereed Journals

Key Publications (Only Q1 & Q2 rated)

  • Analogous of Rogers-Ramanujan type continued fraction identity, B. N. Dharmendra, M. C. Mahesh Kumar and K. Sushan Bairy, Montes Taurus J. Pure Appl. Math., 6(2), 2024, 24-36.

Other Publications

  • On some modular equations of degree three found in Ramanujan’s second notebook, M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, J. Anal. Comput., 2(1), 2006, 45-49.
  • Certain quotient of eta-function identities, M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, Adv. Stud. Contemp. Math., 16(1), 2008, 121-136.
  • On some remarkable product of theta-function, M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, Aust. J. Math. Anal. Appl., 5(1), 2008, Art. 13, 1-15.
  • On some new explicit evaluations of class invariants, M. S. Mahadeva Naika and K. Sushan Bairy, Vietnam J. Math., 36(1), 2008, 103-124.
  • General formulas for explicit evaluations of Ramanujan’s cubic continued fraction, M. S. Mahadeva Naika, M. C. Maheshkumar and K. Sushan Bairy, Kyungpook Math. J., 49(3), 2009, 435-450.
  • Some theorems on the explicit evaluations of singular moduli, K. Sushan Bairy, General Mathematics, 17(1), (2009), 71-87.
  • On some Ramanujan-Selberg continued fraction, M. S. Mahadeva Naika, Remy Y. Denis and K. Sushan Bairy, Indian J. Math., 51(3), 2009, 585-596.
  • Modular equations for the ratios of Ramanujan’s theta function ψ and evaluations, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, New Zealand J. Math., 40, 2010, 33-48.
  • Some new modular equations of degree four and their explicit evaluations, M. S. Mahadeva Naika, K. Sushan Bairy and M. Manjunatha, Eur. J. Pure Appl. Math., 3(6), 2010, 924-947.
  • On some parameter involving Ramanujan’s cubic continued fraction, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, Indian J. Math., 53(3), 2011, 495-509.
  • On some new Schläfli-type mixed modular equations, M. S. Mahadeva Naika and K. Sushan Bairy, Adv. Stud. Contemp. Math., 21(2), 2011 189-206.
  • A continued fraction of order 4 found in Ramanujan’s ‘lost’ notebook, M. S. Mahadeva Naika, K. Sushan Bairy and M. Manjunatha, South East Asian J. Math. Math. Sci., 9(3), 2011, 43-63.
  • Certain identities for a continued fraction of Eisenstein, M. S. Mahadeva Naika, K. Sushan Bairy and M. Manjunatha, Far East J. Math. Sci., 57(2), 2011, 205-226.
  • Class invariants and its applications, M. S. Mahadeva Naika and K. Sushan Bairy, Proceedings of the National Conference on Geometry, Algebra, Logic and Number Theory, Applications, Tumkur University, December 2012, 72-99. (ISBN: 978-81-924393-4-1).
  • New identities for Ramanujan’s cubic continued fraction, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, Funct. Approx. Comment. Math., 46(1), 2012, 29-44.
  • On some new identities for Ramanujan’s cubic continued fraction, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, Int. J. Contemp. Math. Sci., 7(20), 2012, 953-962.
  • Some new identities for a continued fraction of order 12, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, South East Asian J. Math. Math. Sci., 10(2), 2012, 129-140.
  • Some modular equations in the form of Schläfli, M. S. Mahadeva Naika and K. Sushan Bairy, Italian J. Pure Appl. Math., 30, 2013 233-252.
  • Contributions to modular equations and class invariants, K. Sushan Bairy, Ph.D. Thesis, Bangalore University, 2011; Lambert Academic Publishing, Germany, 2013. (ISBN: 978-3-659-23898-7).
  • Certain identities for a continued fraction of Ramanujan, M. S. Mahadeva Naika, K. Sushan Bairy and S. Chandankumar, Adv. Stud. Contemp. Math., 24(1), 2014, 45-66.
  • On some explicit evaluation of the ratios of Ramanujan’s theta-function, M. S. Mahadeva Naika, K. Sushan Bairy and S. Chandankumar, Bull. Allahabad Math. Soc., 29(1), 2014, 53-86.
  • A recurrence relation related to the product  and successors of a known four-variable elementary identity, S. Bhargava and K. Sushan Bairy, Proceedings Jangjeon Math. Soc., 17(2), 2014, 273-286.
  • Certain modular relations for remarkable product of theta-functions, M. S. Mahadeva Naika, K. Sushan Bairy and N. P. Suman, Proc. Jangjeon Math. Soc., 17(3), 2014, 317-331.
  • Some new modular equations of degree 2 akin to Ramanujan, M. S. Mahadeva Naika, K. Sushan Bairy and S. Chandankumar, Southeast Asian Bulletin of Mathematics, 39(1), 2015, 93-112.
  • Modular relations for a remarkable product of theta functions and evaluations, M. S. Mahadeva Naika, K. Sushan Bairy and N. P. Suman, Recent Advances in Mathematics, RMS-Lecture Notes Series, 21, 2015, 133-145.
  • Jacobi-Sohncke-type mixed modular equations and their applications, M. S. Mahadeva Naika, K. Sushan Bairy and C. Shivashankar, Note di Matematica, 36(1), 2016, 37-54.
  • Jacobi-Sohncke type mixed modular equations and their applications to overpartitions, M. S. Mahadeva Naika, K. Sushan Bairy, D. S. Gireesh, and N. P. Suman, Palestine J. Math., 6(1), 2017, 228-237.
  • New identities for ratios of Ramanujan’s theta function, M. S. Mahadeva Naika, S. Chandankumar and K. Sushan Bairy, Adv. Stud. Contemp. Math. (Kyungshang), 27(1), 2017, 131-146.

Research Project

Working in the field of continued fractions of Srinivasa Ramanujan; q-series; Ramanujan’s theta-function; partition function; Ramanujan class-invariants; singular moduli.

At scattered places of his second notebook, Ramanujan recorded a total of nine P – Q mixed modular relations of degrees 1, 3, 5 and 15. These relations were proved by B. C. Berndt and L.-C. Zhang and the same has been reproduced in the book by Berndt. S. Bhargava, C. Adiga and M. S. Mahadeva Naika have established several new P −Q mixed modular relations with four moduli.  We established several new P − Q mixed modular equations akin to those recorded by Ramanujan in his notebooks. As applications, we establish several modular relations connecting the Ramanujan’s remarkable product of theta-functions.

close

Notifications

banner-icon